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Abstraa--A hydrodynamic theory of the process of thinning of emulsion films based on the solution of the 
complete set of Navier-Stokes' equations for the dispersion phase is given. It is shown that the velocity of 
thinning depends mainly on the viscosity of the dispersion phase. In the presence of a surfactant soluble in 
the continuous phase, the velocity of thinning differs only slightly from that for foam films, whereas in the 
case of a suffactant soluble in the dispersed phase, this velocity is the same as in a system without any 
surfactant. On these grounds a possible explanation of Bancroft's rule for low stability emulsions is put 
forward. 

1. INTRODUCTION 

In our preceding work (Ivanov & Traykov 1976) a formula was deduced for the velocity of 

thinning V of a thin emulsion film, formed when two drops approach each other in the absence 
of surfactant. Although such films can be formed and investigated (Hartland 1967; Mackay & 
Mason 1963; Platicanov & Manev 1964; Sheely & Leng 1971), most of the works deal with 

surfactant stabilised emulsion films (Sonntag 1960; Sonntag & Strenge 1970). In practice, the 
emulsion systems used likewise contain considerable quantities of surfactarlt (Becher 1965; 

Shermann 1968). So the present work contains an analysis of the effect of surfactants on the 
velocity of thinning of plane-parallel emulsion films. 

According to Boussinesq 0913), this effect can be accounted for by introducing two surface 

viscosities----dilational and shear. Levich 0962) has demonstrated that the dilational surface 
viscosity is equivalent to the Marangoni-Gibbs effect, i.e. it is caused by the disturbance of the 
surfactant which leads to the appearance of a surface tension gradient and to the interchange of 

surfactant between the surface and the bulk of the liquid. We shall account for this effect by the 
method suggested by Levich and used in previous works on the hydrodynamics of foam films 
(Radoev, Dimitrov & Ivanov 1974; Ivanov & Dimitrov 1974). The shear surface viscosity entails 

considerable complexities. If it is accounted for, the theory grows more and more complicated, 
so we shall begin by assuming it to be equal to zero, and in appendix II we shall demonstrate 

that the velocity of thinning is not dependent on it. We shall account for the effect for the liquid 
moving within the drops by solving the complete equations of Navier-Stokes, as in Ivanov & 
Traykov 0976). To simplify the solution, we shall only examine the limiting cases, in which the 

surfactant is only soluble either in the film or in the drops. In the first instance, it appears that 
the Marangoni-Gibbs effect has a similar influence as with foam films (Radoev, Dimitrov & 
Ivanov 1974); in the second instance, it turns out to be zero. 

The following section contains the formulation of the problem. The basic equations and the 

boundary conditions applied now are similar to those used in preceding works on emulsion films 
(Ivanov & Traykov 1976) and foam films (Radoev, Dimitrov & Ivanov 1974; Ivanov & Dimitrov 
1974) where they were discussed in detail. The results obtained are discussed in section 5; their 
interrelation with Bancroft's rule and the theoretical interpretation of that rule by Davies (1957) 
are also examined in section 5. The correct formulation of the equations for the diffusion 
mass-transfer in lubrication approximation is discussed in appendix I. 

fPresent address: University for Teachers, Department of Chemistry, 9700 Shumen, Bulgaria. 
~tTo whom correspondence should be sent. 
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2. FORMULATION OF THE PROBLEM 

For the sake of simplicity, we are considering the system shown in figure 1: the emulsion film 
of thickness h and radius R is formed in a tube of radius Rc by sucking out the liquid from a 
biconcave meniscus II. The tube, which is assumed infinitely long, is filled with the liquid I 
forming the dispersion phase, i.e. the drops. The film is plane-parallel and sufficiently thin, so 

that hlR ~ 1. Because of the natural symmetry of the system, we shall use the cylindrical 

coordinates shown in figure 2, and all calculations will be done only for z > 0. The flow in the 

film obeys the equations of the lubrication theory. Denoting all the quantities referring to the film 
by an asterisk we write these equations in the form (Kochin, Kibel & Roze 1965; Levich 1962) 

a=w*~_ 1 Op* 
---Oz 2 Iz* Or ' [la] 

Op* = 0,  [lb] 
3z 

1 a (rv*)+ 0v* 
r Or ~ = O. [lc] 

For the dispersion phase we solve the complete set of Navier-Stokes equations 

av, i_v,~_~+ av, l a p ,  [a'v,+ atv__,~+a2v,] 
at v : - ~ - = - p ~ - r l , [ - - ~ -  ~ r \ r ]  a z ' J '  [2a] 

Ovz 1 Op / a2v~ 10v, 02v,\ 
a v, ~ v, + v~ - ~ u [-~r 2 + r ~r + -~z 2 } , [2b] Ot dz p Oz 

V 
+Ov~ 1 0 

,v, -~z=0 ;  V,- - - r~rr r ,  [2c] 

where gravity has been disregarded. In [1] and [2] v, and v, denote the respective velocity 
components; t, time; p, pressure; p, density; ~ and v = t~/p--the bulk liquid dynamic and 
kinematic viscosities. 

We are only considering the case of diffusion controlled surfactant transfer. The surfactant 
repartition obeys the equation of convective diffusion. When the surfactant is only soluble in 

- -  i - -  ] '  - -  - -  - -  

- , _  

Figure 1. 

Z 

/p =1 

- - I  

Figure 2. 

Figure 1. A model of emulsion film of radius R formed in a capillary of radius Re. I---dispersion phase, 
II--dispersion medium. 

Figure 2. Scheme of a plane-parallel circular film of radius R and thickness h. 
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the film, where the Peclet number Pe* is small (Radoev, Dimitrov & Ivanov 1974), this equation 
acquires the simpler form 

g c *  a, = ! o_ o 
Arc* + ~ = O; r Or r ~  [3a] 

where c* is the surfactant concentration. 
In the dispersion phase the convective and the viscous terms in [2a] are of the same order of 

magnitude (Ivanov & Traykov 1976), i.e. Reynolds' number Re is of the order of one. 
Therefore, P e  ~ 1 ÷, and we can use the convective diffusion equation in its approximated form, 
valid for the diffusion boundary layer (Levich 1962) 

Oc+ Oc O c _  _ O 2 c  

-~ V" Tr + v" Yz - v - ~  , 
[3b] 

where D is the bulk diffusion-coefficient. 
The local values of the surface tension o~ and surface and bulk concentrations F and c (or 

c*) for a thinning film, can be represented as sums of the corresponding equilibrium values (at 
zero flow) tro, Fo and Co (or c*) and the perturbations ~,, F, and c~ (or c*) caused by the flow 
(or = ¢o + orl etc.). Since these perturbations are much smaller than the respective equilibrium 
values, in cases where calculations have to be simplified, tr and U are expanded in series with 
respect to c, (or c*) and only the linear terms in this series are accounted for (see Levich 1962; 
Radoev, Dimitrov & Ivanov 1974). Thus, our solution gives, in fact, the linear terms of this 
perturbation analysis. 

When solving [11-[3], the following boundary conditions are used: 

v* = v, = U(r)  

v *  = v~ = - I//2 

, Or* Or, Ooro Oc* 

- -  - -  Oz = g Oz + Oc* Or 

V,(FU)-  D,A,F = - D* 0c* 
0z 

P* = P* / 

f C* ---- Co* 

v , = 0  

P = P o  

C=Co 

at 

at 

at 

[4a] 

[4b] 

z = h/2 [4c] 

[4d] 

[4el 
r = R  

[4f] 

[4g] 

z = oo [ 4 h i  

[4 i ]  

where V = - d h / d t  is the rate of thinning of the film, U(r)  is the radial velocity on the 
interface, po is the pressure in the dispersion phase far from the interface, D, is the surface 
diffusion-coefficient and p* is the pressure in the hypothetical equilibrium film of the same 
thickness. This pressure is related to the pressure pm in the meniscus through the equation 
po*=pm+II, where II is the disjoining pressure (see e.g. Toshev & Ivanov 1975). All 
functions giving the solution of [11-[3] must obviously be finite at r = 0. When the surfactant is 
soluble in the dispersion phase, c is substituted for c* in [4c] and [4d], - D is substituted for D* in 
[4d] and [4i] is used instead of [4f]. 

tPe= Re (dD)~I~  Re. 
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Equations [4a] and [4b] result from the very formulation of the problem; [4c] is the 
continuity condition for the tangential component of the stress tensor on the interface; [4d] is 
the conservation law for the surfactant. Equations [4e] and [4f] follow from the assumption that 
the liquid in the meniscus is immobile and [4g]-[4i] account for the disappearance of the radial 
motion of the liquid in" the dispersio n phase with z -) oo. 

3. S U R F A C T A N T  S O L U B L E  IN THE D I S P E R S I O N  M E D I U M  

To simplify matters, we shall first consider the case of a steady flow in the dispersion 
phase,t i.e. in [2] we shall disregard the derivatives on t. The case of a non-steady flow will 
likewise be considered towards the end of this section. Since the method of solving [1] is given 
in detail in (Radoev, Dimitrov & Ivanov 1974) and (Ivanov & Traykov 1971/72), here we only 
adduce the final results: 

h 2 
v*=~(2Uh- Vr)(z2--4)+ U, 

31z*V 2 2, 12~*f"  p * . = p * + ~ ( R  - r  ~ - ~  Udr. 

[5a] 

[5b] 

The concentration repartition c* need not be calculated within the lubrication approximation 
limits; [3a] and [4d] can be replaced by the simpler equation (see appendix I): 

/ 0Fo D'h\ Oc* 
r o U -  [Ds ~ o  +-T- - )  -~-r = O [6] 

which affords the determination of Oc*/Or. 
The particular symmetry of the system suggests the following form of the expression for v,: 

v, = U(r) Jf(rl) [7] 

where 

'1 = (z - hi2) ( U]rv) ''2 [8] 

is a dimensionless coordinate. Thus far unknown, the function .f(~) will be determined 
hereafter. If we express ovdoz from [7] and av*/Oz from [5a], by using [4c] and A.I.5, we obtain the 
following algebraic equation for the ratio U/r: 

r 2h + (e" + e/)=O [9] 

where 

and 

~/= (a~ro/aC*o)Fo 
2Ds(Oro/OC*o)]' [101 

3~*D* 1 + D*h J 

e ~ = - [a,t~h(Ulru)l/2]16#* [11] 

a, = (dfldr/).=o. [12] 

tBecause of the very small value of Reynolds' number in the film, the flow there is always steady (see Radoev, 
Dimitrov & Ivanov 1974). 
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Equation [9] is satisfied by the solution 

U = A r  [13] 

where the constant A does not depend on r (see [9]): 

V 
A = 2h(1 + C + ~l). [14] 

Any further solution is analogous to that described by Ivanov and Traykov (1976), where 
the approximations used below are analysed. Integrating [2c] on z, and with the aid of [4b], [8] 
and [13], we obtain: 

f Vz = - 2(Av) '/2 I(n) dn - VI2. [151 

Taking into account [4h], [7], [13] and [15], we conclude from [2b] that p does not depend on r, 
i.e. that the term aplar in [2a] disappears. Thus, the following equation for .f(~/) is obtained from 
[2a], [7], [8], [13] and [15]: 

f '  + 2f' [ fo"f dn + Vl4(Av)"2]- f2=O [16] 

which, after differentiation on r/, transforms into: 

f,,,f,_ f,,2 + f,f= = O. [17] 

The boundary conditions to be used in solving [17] are: 

~=11} at 17=0 [18a] 
[18b] 

f = 0  at 7/=oo. [18c] 

Equations [18a] and [18c] follow from [4a], [4g] and [7]; [18b] follows from [16] and [18a], with 
V[4(Av)'~2~ 1 (see Ivanov & Traykov 1976). The numerical solution of [17] yields the functions 
[(7) and fo"/: d~ (see figure 3, curves 1 and 2 respectively), necessary for the calculation of v, 
and Vz from [7] and [15] and the value of the constant a, = -1.19 in [11]. 

o k, 
0.8 2 

°° F / 
0.2 ~ ' ~  

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

Figure 3. Plots of the solution of [17]: l~dependence of the function f on the dimensionless coordinate ~1; 
2--dependence of the function fo"/" d'0 on 7; 3--dependence of the function/" on ~ obtained in (Ivanov & 

Traykov 1971-72) by yon Karman-Pohlhausen's method (see also Ivanov & Traykov 1976). 
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The velocity of thinning is found from the balance of forces acting upon the film surface: 

fo R pzzr dr = fo R p%r dr [19] 

where p= and p*z = - p *  are the normal components of the stress tensor. The problem could 
be solved without any further approximations (Ivanov & Traykov 1976), but in order to obtain 
simpler final results we assume p= = -po. Then, from [Sb], [13], [14] and [19], we obtain: 

where 

V! Vo = 1 + l/(e" + d )  [20] 

Vo = 2h 3API31~*R 2 [21] 

is Reynolds' velocity of thinning of a film formed between two rigid parallel discs (Reynolds 
1886), and 

Ap = Pc - II [22] 

is the driving force (per unit area) of the process (Pc = po-p , , )  is the capillary pressure). 

When the term Ovdat in [2a] cannot be disregarded, it can, by using [7], [8], [13] and [14], 
be transformed, following Ivanov and Traykov (1976), to 

where 

Or, . Or, - rA~(2[ + aqf')r o--f = - = 

0 In " h 0(~" + , t)  
X = ( 1 -  0 - - ~  (1 + '  + " ) +  Oh 

[23] 

[241 

Thus, instead of [17], we obtain 

f,,,f, _/,,2 + f . f  + (2~' - 3/'2)K = 0 [25] 

and the boundary condition [18b] transforms into [" = 1 + 2X at *1 = 0. In this case [20] is again 
obtained, but [, and therefore at will depend on h, ~" and ~f (through r). The values of a~ for 
different r are tabulated in (Ivanov & Traykov 1976). 

4. SURFACTANT SOLUBLE IN THE DISPERSION PHASE 

We shall now consider only the case of steady flow and surfactant transfer in the dispersion 
phase. A linear dependence between the surface radial velocity U and r [13] was obtained, both 
for the system without surfactant (Ivanov & Traykov 1976) and for the case of a surfactant 
soluble in the dispersion medium (section 3 of the present paper). We therefore assume that in 
the case of a surfactant soluble in the dispersion phase, considered in this section, [13] is still 
valid, but that the constant A may be different. This means that the solution and the final results 
of the preceding section can be used in this case as well, with the exception of the deter- 
mination of A. 

In order to find A, we must solve the 6quation of convective diffusion[3b] (with OclOt = 0). 
The function [(~/) from figure 3 is accurately represented by 

[ = e a,'. [26] 
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Thus, introducing [ as a new variable (instead of ~), from [3b], [7], [8], [13] and [15] we readily 
obtain 

02c dc 0c . 0c v 
[ - ~  + 2 k f - ~ -  (2k - [27] - 1 ) ~ 7 - k r ~ r  r = O ;  k D a 2 .  

Equation [27] allows a solution of the kind F , ( f ) r ' ,  where n is a positive number, and F, is 
determined from the equation 

IF"  + 2k fF"  - (2k - 1)F" - knF,, = O. [281 

As the solution of [28] is offered through the confluent hypergeometric function ~ (Janke et al. 

1960), we can write c as being 

c = r"[B,~b( - n/2, 1 - 2k, - 2k f )  + B2f  2k e-2kt&(1 + n/2, 2k + 1, 2k/)] I291 

where Bt and B2 are integration constants. This expression will satisfy the boundary conditions 

[4d] and [4i] only if n = 0. Then, from [4i] we obtain B1 = Co, and [4d], with the aid of the 
approximation F = Fo+ (OFo/OCo)(c- co) (see Radoev et al. 1974), provides 

B2 = Fo e2k/3 
(OFolOco)ek(1,2k + 1,2k)(1 +/3)" [30] 

Thus we finally obtain 

ro f  :k e2k"-'~b(1,2k + 1,2kf) /3 
c = Co-  (OFo/OCo)tk(1,2k+ 1,2k) " 1 +/3 [31] 

where 

B = (Av)m(OF°/Oc°)(2k + 1)~b(1,2k + 1,2k) 
D ( -  al)kqb(2,2k + 2,2k) 

[321 

Inserting f = l ( r /=  O) in [31], we find the concentration c(O) at the film surface 

ro /3 
c(n  = O) = Co aFolaco 1 + / 3  [331 

The constant A in [13] is determined, as before, from [4c]. Since the term dc/Or disappears for the 

system under consideration, the surfactant will have no effect at all on the velocity of thinning, and 
in that respect this system will behave as an emulsion system without surfactant. 

5. D I S C U S S I O N  

In the absence of any surfactant, the parameter d defined by [10] is zero so that from [20] 
(see also [21]) we again obtain the results found for this case by Ivanov & Traykov (1976). 

When the surfactant is soluble in the dispersion medium and the liquids have comparable 
viscosities (/z/tt* ~ 1), in practice e" in [20] can always be disregarded. Indeed, for surfactants 
of moderate surface activity ro = I0-5c *, &ro/OC* = - 10 7 g cm 3 sec -2 mol -I and ~g = 109 c* (we 

have taken in [10]/z* = 10 -= P, D* = 10 -~ cm2/sec and D, = 0). If c* = 10 -9 mol/cm 3 d ~- 1, so 
that V is of the order of magnitude of Reynolds'  velocity Vo. With A ~-Vd2h ,  A P  = 

103dyn/cm 2, h = 10-5 cm, R =  10-2cm a n d / z  = t t * =  10 -2 P, from [11] and [21] we find ~ ' =  
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10 -5. We thus conclude that even negligible contaminations of surfactants that are soluble in the 
dispersion medium will eliminate the influence of the liquid flow within the droplet and the film 
will obey the equation of the velocity of thinning of foam films, as derived in Radoev, 
Dimitrov & Ivanov (1974). The same equation is obtained from [20] by making E e = 0. Because 

of the surfactant diffusion, this velocity is greater than Vo, although both are of the same order 
of magnitude (Manev et al. 1976). 

The situation is quite different for surfactants that are only soluble in the dispersion phase. 
We have shown in section 4 that in that case the surfactant remains uniformly distributed on 
the film surface, so that the Marangoni--Gibbs effect disappears. The system will therefore 
behave as a system without surfactant, and the velocity of thinning can be calculated from [20] 
by making ~ = 0. If # / g * ~  1, the velocity of thinning will be many times higher than Reynolds' 
velocity (Ivanov & Traykov 1976). This conclusion is not compromised by the fact that in 
section 4 we have disregarded the derivatives of v,, Vz and c on t. We did in fact show in section 
3 (see also Ivanov & Traykov 1976) that accounting for the derivatives on t in [2] leads to an 
alteration of the values of A and V, but does not alter the functionality of v, (and vz) on r. On 
the other hand the term c~c/Ot could be represented, by analogy with [23] like this: c~c/c~t = 

(Oc/Oh)/(dh/dt) = -V(Oc[Oh).  Therefore, the derivative Oc[Oh will appear in [27] and [31]-[33] 
will naturally be altered, but the conclusion about the independence of c of r, and con- 
sequently about the independence of the velocity of thinning of the presence of surfactant, 
will still be valid. 

We see therefore that the emulsion system can behave in two wholly different ways, 
depending on the solubility of the surfactant: first, in the case of a surfactant soluble in the 
dispersion medium, the velocity of thinning is somewhat higher, but still of the order of 
Reynolds' velocity, and mainly determined by the properties and concentration of the sur- 
factant; second, in the case of a surfactant soluble in the dispersion phase, the velocity of 
thinning is much greater than Reynolds' velocity and is wholly independent of the presence of 
surfactant.t This drastic difference is due to the different way of supplying the surfactant on to 
the film surface. In the former case, the surfactant is transported from the meniscus at distances 
which are of the order of the film radius R. That is why the surfactant flux is small, and 
incapable wholly to compensate the surface tension gradient caused by the liquid flow. In the 
latter case the surfactant is transported from the bulk of the dispersion phase on to the surface 
only through the diffusion boundary layer, and the surfactant flux readily eliminates the surface 

tension gradient. 
This effect is probably related to Bancroft's rule (Bancroft 1913; see also Shermann 1%8) 

and its explanation, as given by Davies (1957). When an emulsion is formed, according to 
Bancroft, the continuous phase will be the phase in which the surfactant is preferentially soluble. 
Davies (1957) assumes that the type of the emulsion is determined by the ratio of the rates of 
coalescence Vo/w and vw~o of the droplets in the emulsions 0/W and W/O. He represents these 
rates by the equation v = Kh~, where Kh is a hydrodynamic (collision) factor and 6 is a 
function of the energetic barrier against coalescence. Assuming that Kh has the same value for 
both emulsion types and expressing ~ through the surfactant properties, he was able to explain 
Bancroft's rule and the relation between HLB and the type of the emulsion. Our results 
indicate, however, at least in the case of the droplets' coalescence being preceded by the 
formation of a thin liquid film, that the hydrodynamic factors for direct and reverse emulsion 
may differ substantially. This difference may perhaps be immaterial in the case of highly stable 
emulsions, where the energetic barrier against coalescence is great, but for emulsions of low 
stability (with ~ of the order of unity), the ratio of the hydrodynamic factors could play a 
decisive role. According to the results of the present work, the hydrodynamic factor will be 
much greater for the droplets formed by the liquid where the surfactant is soluble. This will 

tThis conclusion was corroborated experimentally in the following work. 
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lead to a faster coalescence of these droplets and will favour the formation of the emulsion in 
which the continuous phase is formed by the liquid where the surfactant is soluble. This 
conclusion is in accordance with Bancroft's rule. 

We should point out, however, that the rate of coalescence does not solely depend on the 
velocity of thinning, but also on the behaviour of the capillary waves on the film surface (Vrij 
1966; Sheludko 1962; Ivanov et al. 1970). We shall soon be presenting a theory on the rupture of 
emulsion films, with both effects being taken into account. 
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A P P E N D I X  1 

D I F F U S I O N  MASS-TRANSFER IN LUBRICATION APPROXIMATION 

In investigating the effect of surfactants on the hydrodynamics of thin liquid films, the 
surfactant transfer is usually calculated with the aid of Fick's second law [3a]. Unlike [1], this 
equation does not take into account the great difference in the linear dimensions of the film 
(h/R ~ 1). The solution is therefore obtained in the form of series, which requires the additional 
use of the condition hlR ~ 0 (see, e.g. Ivanov & Dimitrov 1974). This procedure is not wholly 
self-consistent; it is therefore desirable for the equation describing the surfactant repartition to 
be so formulated as to be compatible with the lubrication theory [1]. 

If there is to be a diffusion flow, the two terms in [3a] should be of the same order. This will 
be so if we set down c*(r, z) in the form of a series in the powers of z (see also [4d]): 

c*(r, z) -~ c* + c*(r) + c*(r) ~ ,  [A.l.1] 

with the factors c* and c* satisfying the condition (substitute [A.I.1] in [3a]: 

c*h 2 ~ ~ c* . [A.1.2] 
R 

Accordingly, for the result thus obtained to be compatible with the lubrication approximation, 
whenever no differentiation is made on z, the term with z 2 in [A.I.I] should be disregarded. On 
the basis of [A.I.1] and [3a] we can set down for the concentration gradient 

_(0c*~ h c ,  h h , 
\ az/~=,~2 = - 2 = ~ a,c*, ~ ~ a,c . [A.1.3] 

Thus, in the case of the surfactant being soluble in the dispersion medium, we shall, instead of 
[4d], obtain a more simple condition with the aid of the approximation ArF-~ (aFdac*o)A,c* 

r o V , U -  (D, ~c.o + - ~ ) a , c *  = O . [A.1.41 

After integration on r, it yields (the integration constant is to be zero on the requirement for the 
functions to be finite at r = 0): 

ZD aro roU-  ,a- o+v 2: Or =0.  [A.1.5] 
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A P P E N D I X  2 

E F F E C T  OF S U R F A C E  VISCOSITY ON THE V E L O C I T Y  
OF T H I N N I N G  OF THIN L I Q U I D  FILMS 

The effect of the surface shear viscosity g, on the velocity of thinning of foam films was 
analysed in Ivanov & Dimitrov (1974); it was demonstrated there that for moderate values of #s 
the effect is negligibly small. As, after Plateau's (1869) well-known work, the relation of surface 
viscosity, velocity of drainage and stability of foams and emulsions has frequently been 
discussed (see, e.g. Gantz 1967), the conclusion on the independence of V on g, ought to be 
likewise corroborated under some other more general method. To simplify calculations, we 
shall examine in detail the case of a foam film and demonstrate, towards the end of this 
appendix that the results are also valid for emulsion films. For a foam with #,s > 0 the 
boundary condition [4c] takes on the form (Ivanov & Dimitrov 1974) 

, a v *  _ Ocro ac* ~_ ~'°--(VrU)'ar [A.2.1] 
tz az - aC*o ar 

In addition to Marangoni-Gibbs effect, certain authors (Sternling & Scriven 1959) also take into 
account the surface dilational viscosity/zd. When that is done, g, + / ~  should be substituted in 
[A.2.1] for g,. After substitution in [A.2.1] of v* from [5a] and of ac*lar from [A.1.5] we obtain 

where x = f iR,  and 

a L x U  = U - "Ix, [A.2.21 

d 1 

h/z, 
a = 6g,R2(1 + ~I), 

VR 
3' = 2h(1 + ~)"  

[A.2.3] 

[A.2.4] 

With a < 1, the solution of [A.2.2] can be represented by the series (Vassilieva & Boutuzov 

1973; Cole 1968) 

U = Uo(x) + Oo(r) + a [U , ( x )  + 01(¢)] + . . . ,  [A.2.51 

where ¢ = x/aln; the functions U~ and O: (i = 0, 1, 2 . . . .  ) are determined by substitution of 
[A.2.5] in [A.2.2] and by equating the coefficients before the identical powers of a, separately 
for Ui and /.7:. We thus obtain the equations 

Uo=3'x; U~+,=L~U~=O ( i=0 ,1 ,2  . . . .  ) ,  [A.2.61 

L,0,  = 0, (i = 0, 1, 2 . . . .  ) ,  [A.2.71 

The equations [A.2.7] have the solution (Korn & Korn 1961) 

= CdlO') + C*KI(Z)  [A.2.8] 

where /i and K~ are modified Bessel's functions of the first order, respectively of first and 
second kind. For U to be finite at r = 0, all the constants C* have to be equal to zero. We thus 
obtain from [A.2.5]-[A.2.8] 

V = 3"x + CIl(X/et 112), [A.2.9] 

I.J.M.F. Vol. 3, No. 5----F 
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where 

C = ~ C~a'. [A.2.10] 
i=O 

Equation [A.2.9] can also be obtained directly from [A.2.2] but we applied the above more 
complicated method so as to demonstrate that C allows an expansion in a series of Taylor with 
respect to a. With a-->0 (i.e. tz, ~0),  [A.2.9] should turn into the expression (see [13] and [14] 
with C = 0) 

U = Vd2h(1 + • I )  = yx .  [A.2.11 ] 

That is possible if Co = 0. In order to determine the remaining constants Ci (i = 1, 2, 3 . . . .  ), we 
shall expand It into a series of Taylor. Then [A.2.9] yields (see Janke et al. 1960) 

,=, ~-o j ! ( j  + l ) t  = ~ j ! ( j  + 1)[ " 
[A.2.12] 

With a ~ 0 ,  only C, remains in the first sum. Since at this U should tend to Uo, we have 

iim (U - Uo) = Ct lim ~.~ (x/2)'J+'a"2-i= O. [A.2.13] 
, , ~  =-.o j=o j ! ( j  + 1)! 

That is only possible if G = 0. By following the same procedure over again, it can be shown 
that C2 = 0, and so on. As all constants C, are equal to zero, it follows from [A.2.9] that with 
a >0,  [A.2.11] will also be valid, and that therefore ~, will have no effect on the velocity of 
thinning V. This conclusion will be justified for those values of a at which the expansion [A.2.5] 
may be used. If we assume that for that it is necessary to have a _-__ 0, 1, we obtain from [A.2.3] 

<0,6/z*R2(l + d )  6.10-2(1+e f) [A.2.14] 
/z,= h = " 

Here we have used the values tz* = 10 -2 P, h = 10 -s cm and R = 10 -2 cm, which are typical for 
the experiments with microscopic thin films (Sheludko 1966; Sonntag & Strenge 1970; Manev, 
Vassiliev & Ivanov 1976). Even at low concentrations of surfactant d ~- 1 (Radoev, Dimitrov & 
Ivanov 1974; Vassiliev, Manev & Ivanov 1976). Then the condition [A.2.14] will be valid with 
#s < 0.1 s.P. Such high values of t*, are hardly possible at low surfactant concentrations. /z, 
increases with the rise of surfactant concentration, but so does d,  so that the effect of/z, on the 
velocity of thinning may prove to be substantial only in certain cases of abnormally high 
surface viscosity. 

With emulsion films the term ~(Ov,lOz) (see [4c]) should be inserted into the R.H.S. of 
[A.2.1]. Expressing this term through [7] and [8], in the case of the surfactant being soluble in 
the dispersion medium, instead of [A.2.2] we shall obtain 

( a L ~ U  = 1+ U - y x .  
l t ~  / 

[A.2.151 

The correction term e ' / ( l + e  I) greatly increases at c*-~0, since then d->0,  whereas e" 
increases. However, even with c* = 0, d does not usually exceed 10 -2 (Ivanov & Traykov 
1976), so that this term may practically always be disregarded. This means that the conclusion 
on the independence of V on ~,, which we reached on the basis of [A.2.2], will also be valid for 
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emulsion films. One can proceed to a more rigorous analysis of [A.2.15] by applying a further 
expansion of U and y in a series over the powers of the small parameter ~'/(1 + d).  As this 
approach conduces to the same results, we shall not adduce here the long calculations 
associated with it. 

In the case of surfactant being soluble in the dispersion phase, the above analysis cannot be 
carried out as owing to the assumption that [13] is still valid (see section 4), the term with/~s in 
[A.2.1] is identically annulled. 
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